Observations of Atmospheric Gravity Waves over the Chinese Seas by Spaceborne Synthetic Aperture Radar

نویسندگان

  • W. Alpers
  • W. Huang
چکیده

On synthetic aperture radar (SAR) images acquired over the ocean often sea surface signatures of atmospheric gravity waves (AGWs) as well as of oceanic internal waves are visible. They often look quite similar and it is not always easy to decide whether the wave-like patterns result from AGWs or from oceanic internal waves. In this paper we present criteria how to discriminate between these two phenomena on SAR images of the sea surface. We present 4 SAR images acquired by the Advanced SAR (ASAR) onboard the European Envisat satellite over the China Seas showing sea surface signatures of AGWs. By using other satellite data and radiosonde data, we show that the wave-like patterns visible on the SAR images are indeed sea surface signatures of AGWs. From the SAR images quantitative information on the sea surface wind fluctuations induced by the secondary airflow associated with the AGWs are derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reprint 904 Atmospheric Phenomena Observed over the South China Sea by the Advanced Synthetic Aperture Radar Onboard the Envisat Satellite

Atmospheric phenomena often leave fingerprints on the sea surface, which are detectable by synthetic aperture radar (SAR). Here we present some representative examples of SAR images acquired by the Advanced Synthetic Aperture Radar (ASAR) onboard the Envisat satellite over the South China Sea (SCS) which show radar signatures of atmospheric gravity waves (AGWs) and of coastal wind fields. On SA...

متن کامل

Performance of the high-resolution atmospheric model HRRR-AK for correcting geodetic observations from spaceborne radars

[1] Atmospheric phase delays are considered to be one of the main performance limitations for high-quality satellite radar techniques, especially when applied to ground deformation monitoring. Numerical weather prediction (NWP) models are widely seen as a promising tool for the mitigation of atmospheric delays as they can provide knowledge of the atmospheric conditions at the time of Synthetic ...

متن کامل

A Review of the Three-dimensional Field Displacement Retrieval Methods Using Interferometric Synthetic Aperture Radar Observations (InSAR) With Emphasis on the Precision of Each of these Methods

Interferometric Synthetic Aperture Radar (InSAR) technology provides a useful tool for quantitatively measuring the deformation of the earth, influenced by natural factors (earthquake, subsidence, and landslide) and human factors (construction of structures, drilling, and the overexploitation of underground water aquifers). In this context, time-series analysis of radar images allows the monito...

متن کامل

Evaluating the deformation monitoring capability of a ground based SAR system with MIMO antenna

By increasing the applicability of ground-based SAR (GBSAR) systems in geoscience and remote sensing, the development and evaluation of new systems have gained attention. GBSAR systems can be utilized for monitoring areas that are hard to or cannot be seen by the airborne or spaceborne systems. Furthermore, they have better spatial and temporal resolutions and are cost-effective and easy to imp...

متن کامل

Application of Displacement Map Produced by Interferometric Synthetic Aperture Radar Technique in Height Datum Determination in the Subsidence Area

Damages due to subsidence such as destruction of watering system and agricultural fertile soil, wells increasing, damage to the roads, bridges and high ways and disordering in the water and gas supplying usually are irreparable and costly. As a huge amount bench marks of height network of Iran are placed in the subsidence area, changing their heights is a challenge for NCC. In this study, a new...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008